بررسی سه نوع شبکه عصبی مصنوعی برای مدل‌سازی افت فشار در سیکلون‌های جداسازی گاز-جامد و بهینه سازی سیکلون با الگوریتم ژنتیک

Authors

  • محسن نیا, ملیکه دانشگاه صنعتی نوشیروانی بابل
  • مقیمان, محمد دانشگاه فردوسی مشهد
Abstract:

در این مقاله به منظور بررسی ارتباط بین افت فشار سیکلون جداسازی و پارامترهای هندسی سیکلون غبارگیری، سه نوع شبکه عصبی مصنوعی انتشار بازگشتی[1]، شبکه عصبی تابع پایه شعاعی[2] و شبکه عصبی رگرسیون تعمیم یافته[3] به کارگرفته شده­اند. پس از آموزش آن­ها با داده­های تجربی، پارامترهای بهینه عملکردی هر کدام شبکه‌ها، با روش جستجوی چند مرحله‌ای[4] به دست آمده‌اند. شبکه­ها بر اساس میزان ضریب همبستگی[5]، خطای مربع میانگین و زمان آموزش باهم مقایسه شده و مشاهده شد که هر سه شبکه می‌توانند با موفقیت سیکلون را مدل کنند. شبکه تابع پایه شعاعی با ضریب همبستگی برابر با  1 بالاترین عملکرد تعمیم یافته[6] و با  خطای میانگین مربع[7] برابر با 7-10×6067/1 کم‌ترین خطا را نسبت به دو شبکه دیگر دارد. پاسخ پیش بینی شبکه انتخابی با پاسخ روش­های تجربی و آماری مقایسه شده و برتری شبکه عصبی انتخابی نسبت به سایر مدل­ها به وضوح مشخص شده است. نتایج نشان می­دهند که شبکه عصبی می­تواند جایگزین بسیار خوبی برای مدل‌سازی افت فشار سیکلون­ها باشد.   2Back Propagation Neural Network/BPNN 3Radial Basis Function Neural Network/RBFNN 4Generalized Regression Neural Network/ GRNN 5Multi Step Search/ MSS 6Correlation Coefficient 7Generalized Performance 8Mean Squared Error/ MSE

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

بررسی سه نوع شبکه عصبی مصنوعی برای مدل سازی افت فشار در سیکلون های جداسازی گاز-جامد و بهینه سازی سیکلون با الگوریتم ژنتیک

در این مقاله به منظور بررسی ارتباط بین افت فشار سیکلون جداسازی و پارامترهای هندسی سیکلون غبارگیری، سه نوع شبکه عصبی مصنوعی انتشار بازگشتی[1]، شبکه عصبی تابع پایه شعاعی[2] و شبکه عصبی رگرسیون تعمیم یافته[3] به کارگرفته شده­اند. پس از آموزش آن­ها با داده­های تجربی، پارامترهای بهینه عملکردی هر کدام شبکه ها، با روش جستجوی چند مرحله ای[4] به دست آمده اند. شبکه­ها بر اساس میزان ضریب همبستگی[5]، خطای ...

full text

مدل سازی و بهینه سازی سیکلون های جداسازی گاز-جامد با استفاده از سه نوع شبکه عصبی مصنوعی، ژنتیک الگوریتم و روش عددی برای دست یابی به افت فشار کمینه

در این پژوهش سه نوع شبکه عصبی مصنوعی به نام¬های انتشار بازگشتی، تابع پایه شعاعی و رگرسیون عمومی برای مدل¬سازی سیکلون¬¬های جداسازی به کار گرفته شده است. ورودی این شبکه¬ها هفت پارامتر هندسی سیکلون و خروجی آن¬ها افت فشار می باشد. پارامتر عملکردی هر کدام از شبکه¬ها به منظور دست یابی به حداقل خطای مربع میانگین، به روش جستجوی چند مرحله ای، بهینه¬سازی شده و سه نوع شبکه بهینه بدست آمد. این پارامترهای ع...

بهینه سازی شبکه عصبی MLP با استفاده از الگوریتم ژنتیک موازی FinGrain برای تشخیص سرطان سینه

امروزه استفاده از سیستم‌های هوشمند در تشخیص پزشکی به تدریج در حال افزایش است. این سیستم‌ها می‌توانند به کاهش خطایی که ممکن است توسط کارشناسان کم‌تجربه اتفاق بیافتد، کمک کند. بدین منظور استفاده از سیستم‌های هوشمند مصنوعی در پیش‌بینی و تشخیص سرطان سینه که یکی از رایج‌ترین سرطان‌ها در بین زنان است، مورد توجه می‌باشد. در این تحقیق فرآیند تشخیص بیماری سرطان سینه با یک رویکرد دو مرحله‌ای انجام...

full text

مدل سازی و بهینه سازی واحد تولید هیدروژن با شبکه ی عصبی مصنوعی و الگوریتم ژنتیک

هدف اصلی این پژوهش، مدل سازی واحد صنعتی تولید هیدروژن براساس تبدیل متان با بخار آب با کاربرد شبکه ی عصبی مصنوعی است. عامل های دبی فراورده و انرژی مصرفی به عنوان عامل های خروجی مدل در نظر گرفته شد و دو شبکه ی عصبی مجزا برای پیش بینی این دو عامل مدنظر قرارگرفت. نتیجه های مدل سازی با دقت بسیار خوب، خطای متوسط مطلق، خطای متوسط نسبی و خطای احتمالی بین داده های واقعی کارخانه و مدل را به ترتیب برابر ب...

full text

مدل‌کردن و بهینه سازی سنتز آنزیمی کافئیک اسید فن اتیل استر با استفاده از شبکه عصبی مصنوعی و الگوریتم ژنتیک

در این تحقیق، واکنش کافئیک اسید و 2- فنیل اتانول در حضور لیپاز تثبیت شده از مخمر آنتارکتیکا (نووزیم 435) به منظور تولید کافئیک اسید فن اتیل استر در سیستم ایزواکتان با استفاده از روش‌های شبکه عصبی مصنوعی و ژنتیک الگوریتم مدل سازی و بهینه گردید. بدین منظور ازیک طرح مرکب مرکزی چرخش پذیر با 4 متغیر و 5 سطح جهت مدل کردن واکنش آنزیمی به کمک شبکه عصبی مصنوعی استفاده شد. متغیرهای مستقل شامل دما، زمان، ...

full text

مدلسازی و بهینه سازی تاثیر پارامترهای مؤثر در عملیات اسیدشویی آلیاژ تیتانیم با استفاده از روش شبکه عصبی مصنوعی و الگوریتم ژنتیک

برای حذف لایه آلفای سطحی از سطح  قطعات فورج داغ شده از جنس آلیاژ تیتانیم و بهبود کیفیت سطح معمولاً از فرآیند اسیدشویی استفاده می شود. با توجه به اثر متقابل پارامترهای مؤثر در این فرآیند، بررسی تاثیر پارامترها بر کیفیت سطح قطعه و میزان باربرداری و  بهینه سازی آنها، نیازمند انجام آزمایشات تجربی و استفاده از روشهای مدلسازی است. در این تحقیق، تاثیر پارامترهای دما، مدت عملیات، غلظت اسید های هیدروفلور...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 1  issue 2

pages  18- 27

publication date 2015-09

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

No Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023